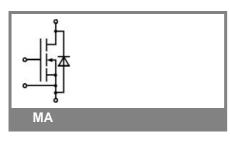
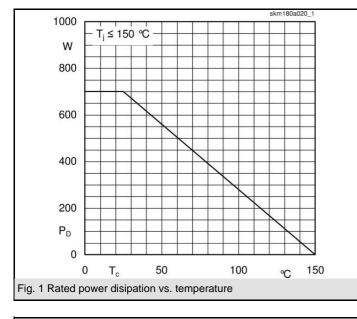


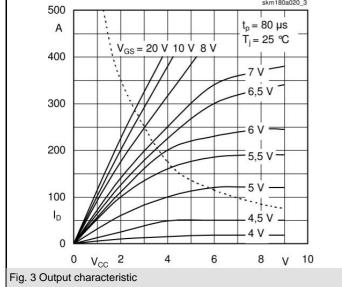
Power MOSFET Modules

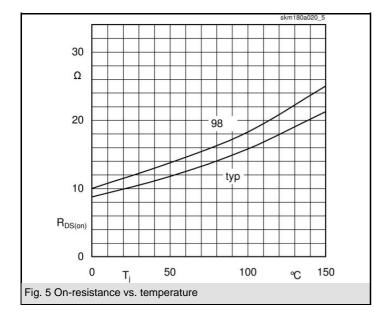
SKM 180A020

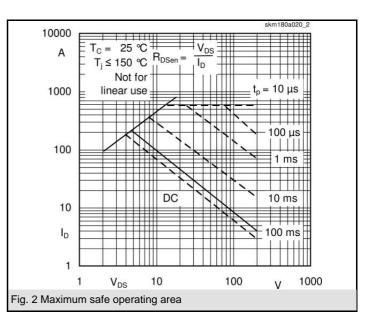
Features

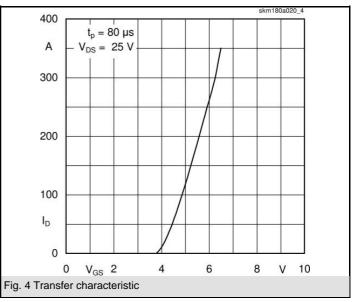

- N Channel, enhancement mode
- Avalanche characteristics
- Short internal connections avoid oscillations
- Isolated copper baseplates
- All electrical connections on top for easy busbaring
- Large clearance (10mm) and creepage distances (13mm)
- UL recognized, file no. E 63 532

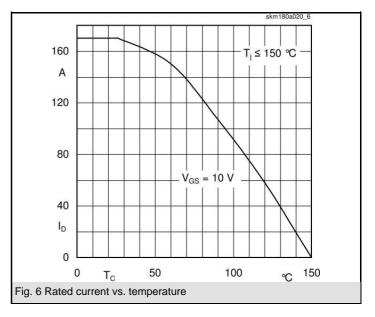

Typical Applications*

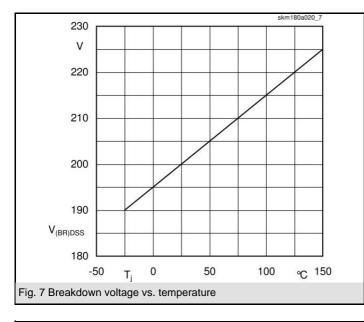

- Switched mode power supplies
- DC servo and robot drives
- DC choppers
- UPS equipment
- Plasma cutting
- Not suitable for linear amplification

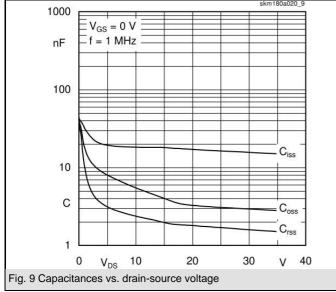

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
V _{DS}		200	V				
I _D	T _s = 25 (80) °C	180 (135)	A				
I _{DM}	1 ms	540	Α				
V _{GS}		± 20	V				
T _{vj} , (T _{stg})		- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F = - I _S		180	А				
I_{FM} = - I_{SM}		540	А				

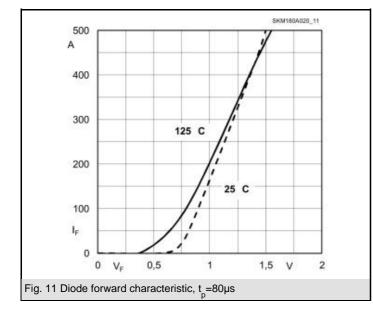

Characteristics		T_c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
V _{(BR)DSS}	V _{GS} = 0 V, I _D = 0,25 mA	200			V	
V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	2,1	3	4	V	
IDSS	V _{GS} = 0 V, V _{DS} = 200 V, T _i = 25 (125) °C		50 (300)	250 (1000)	μA	
I _{GSS}	$V_{GS} = 20 V, V_{DS} = 0 V$		10	100	nA	
R _{DS(on)}	V _{GS} = 10 V, I _D = 110 A		9	11	mΩ	
9 _{fs}	V _{DS} = 25 V, I _D = 110 A	80	100		S	
C _{CHC}	V _{GS} = 0, V _{DS} = 25 V, f = 1 MHz			160	pF	
C _{iss}			16	24	nF	
C _{oss}			3	4,5	nF	
C _{rss}			1,5	2	nF	
L _{DS}				20	nH	
t _{d(on)}	V _{DD} = 100 V, I _D = 80 A,		100		ns	
t _r	V_{GS} = = 10 V, R _G = 3,3 Ω		200		ns	
t _{d(off)}			900		ns	
t _f			220		ns	
Inverse diode						
V _{SD}	I _F = 360 A; V _{GS} = 0 V		1,3	1,5	V	
t _{rr}	T _j = 25 (125) °C		500		ns	
Q _{rr}	T _j = 25 °C		10 (12)		μC	
I _{rr}	$T_j = °C$				A	
Thermal	characteristics					
R _{th(j-c)}	per MOSFET			0,18	K/W	
R _{th(c-s)}	$M_s^{}$, surface 10 μm , per module			0,05	K/W	
Mechanical data						
M _s	to heatsink (M6)	4		5	Nm	
M _t	for terminals (M5)				Nm	
w				130	g	

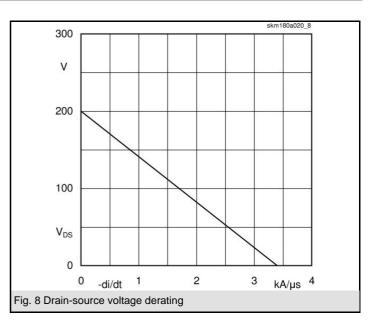


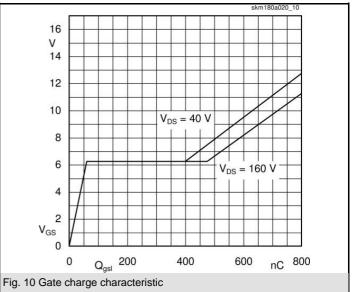


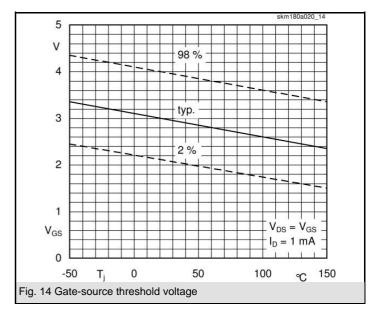


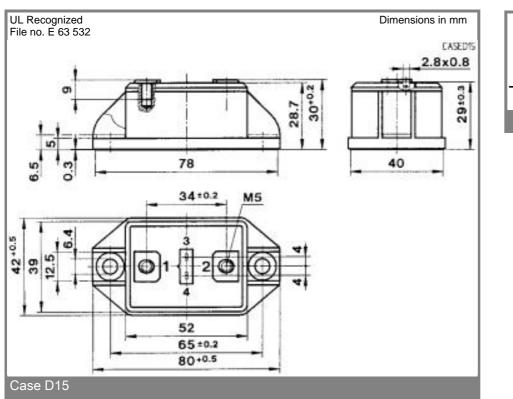


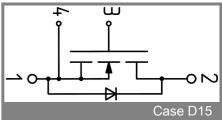












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.